Matrices of paired substitutions show the effects of tRNA D/T loop sequence on Drosophila RNase P and 3'-tRNase processing.

نویسندگان

  • L Levinger
  • R Bourne
  • S Kolla
  • E Cylin
  • K Russell
  • X Wang
  • A Mohan
چکیده

Drosophila RNase P and 3'-tRNase endonucleolytically process the 5' and 3' ends of tRNA precursors. We examined the processing kinetics of normal substrates and the inhibitory effect of the tRNA product on both processing reactions. The product is not a good RNase P inhibitor, with a KI approximately 7 times greater than the substrate KM of approximately 200 nM and is a better inhibitor of 3'-tRNase, with a KI approximately two times the KM of approximately 80 nM. We generated matrices of substitutions at positions G18/U55 and G19/C56 (two contiguous universally conserved D/T loop base pairs) in Drosophila tRNAHis precursors. More than half the variants display a significant reduction in their ability to be processed by RNase P and 3'-tRNase. Minimal substrates with deleted D and anticodon stems could be processed by RNase P and 3'-tRNase much like full-length substrates, indicating that D/T loop contacts and D arm/enzyme contacts are not required by either enzyme. Selected tRNAs that were poor substrates for one or both enzymes were further analyzed using Michaelis-Menten kinetics and by structure probing. Processing reductions arise principally due to an increase in KM with relatively little change in Vmax, consistent with the remote location of the sequence and structure changes from the processing site for both enzymes. Local changes in variant tRNA susceptibility to RNase T1 and RNase A did not coincide with processing disabilities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In vitro 3'-end endonucleolytic processing defect in a human mitochondrial tRNA(Ser(UCN)) precursor with the U7445C substitution, which causes non-syndromic deafness.

Eukaryotic tRNAs are transcribed as precursors. A 5'-end leader and 3'-end trailer are endonucleolytically removed by RNase P and 3'-tRNase before 3'-end CCA addition, aminoacylation, nuclear export and translation. 3'-End -CC can be a 3'-tRNase anti-determinant with the ability to prevent mature tRNA from recycling through 3'-tRNase. Twenty-two tRNAs punctuate the two rRNAs and 13 mRNAs in lon...

متن کامل

The N-terminal half-domain of the long form of tRNase Z is required for the RNase 65 activity.

Transfer RNA (tRNA) 3' processing endoribonuclease (tRNase Z) is an enzyme responsible for the removal of a 3' trailer from pre-tRNA. There exists two types of tRNase Z: one is a short form (tRNase ZS) that consists of 300-400 amino acids, and the other is a long form (tRNase ZL) that contains 800-900 amino acids. Here we investigated whether the short and long forms have different preferences ...

متن کامل

RNA heptamers that direct RNA cleavage by mammalian tRNA 3' processing endoribonuclease.

Mammalian tRNA 3' processing endoribonuclease (3' tRNase) can recognize and cleave any target RNA that forms a precursor tRNA-like complex with another RNA. Various sets of RNA molecules were tested to identify the smallest RNA that can direct target RNA cleavage by 3' tRNase. A 3' half tRNAArgwas cleaved efficiently by 3' tRNase in the presence of small 5' half tRNAArgvariants, the D stem-loop...

متن کامل

Arabidopsis encodes four tRNase Z enzymes.

Functional transfer RNA (tRNA) molecules are a prerequisite for protein biosynthesis. Several processing steps are required to generate the mature functional tRNA from precursor molecules. Two of the early processing steps involve cleavage at the tRNA 5' end and the tRNA 3' end. While processing at the tRNA 5' end is performed by RNase P, cleavage at the 3' end is catalyzed by the endonuclease ...

متن کامل

Identification and Sequence Analysis of Metazoan tRNA 3′-End Processing Enzymes tRNase Zs

tRNase Z is the endonuclease responsible for removing the 3'-trailer sequences from precursor tRNAs, a prerequisite for the addition of the CCA sequence. It occurs in the short (tRNase Z(S)) and long (tRNase Z(L)) forms. Here we report the identification and sequence analysis of candidate tRNase Zs from 81 metazoan species. We found that the vast majority of deuterostomes, lophotrochozoans and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 273 2  شماره 

صفحات  -

تاریخ انتشار 1998